E08-014:

3-NUCLEON CORRELATIONS

Patricia Solvignon Jefferson Laboratory

Spokepeople:

John Arrington (ANL), Donal Day (UVa), Doug Higinbotham (JLab), Patricia Solvignon (JLab)

> Hall A Collaboration Meeting December 15-16 2009

INCLUSIVE SCATTERING AT LARGE X

INCLUSIVE SCATTERING AT LARGE X

Quasi-Elastic Scattering

 $x \approx 1$

Motion of nucleon in the nucleus broadens the peak

little strength from QE above $x \approx 1.3$

Jefferson Lab

constant ratio if seeing SRC

SHORT-RANGE CORRELATIONS (SRC)

- High-momentum tail dominated by 2N-SRCs
- NN interaction generates high momenta (k>kf)
- Similar shape for k>kf

Jefferson Lab

SRC EVIDENCE AT SLAC

Frankfurt, Strikman, Day, Sargsian, PRC48, 2451 (1993)

Jefferson Lab

Ratio of cross section (per nucleon) shows plateau above x ≈1.4, as expected if highmomentum tails dominated by 2N-SRCs Ratio in plateau, proportional to the number of 2N SRCs

 $a_2({}^{3}He)=1.7\pm0.3$ $a_2({}^{4}He)=3.3\pm0.5$ $a_2({}^{12}C)=5.0\pm0.5$ $a_2({}^{27}Al)=5.3\pm0.6$ $a_2({}^{56}Fe)=5.2\pm0.9$ $a_2({}^{197}Au)=4.8\pm0.7$

INDICATION OF 3N-SRC FROM CLAS

Jefferson Lab

Experimental observations

✓ Confirmation of 2N-SRC at x>1.5
✓ Indication of 3N-SRC plateau
✓ Isospin dependence ?

DOMINANCE OF THE TENSOR FORCE

Simple SRC model assumes isospin independence

Jefferson Lab

DOMINANCE OF THE TENSOR FORCE

Patricia Solvignon

rson Lab

Jeffe

SRC ISOSPIN STUDY FROM INCLUSIVE SCATTERING

Inclusive ratio is 'isospin-blind' (sum of n and p)

Target can be isospin sensitive

✓ Compare ⁴⁰Ca to ⁴⁸Ca – approved JLab experiment ✓ Compare ³H to ³He – proposed JLab experiment, 12 GeV upgrade

 \blacksquare n-p pair dominance \rightarrow equal number of high momentum p, n

Isospin-independent correlations \rightarrow Z protons, N neutrons at high p

ISOSPIN STUDY OF SRC

Simple mean field estimates for 2N-SRC

Isospin independent: $\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \xrightarrow{\sigma_p = 3\sigma_n} 0.92$ n-p (T=0) dominance: $\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{(20 * 28)/48}{(20 * 20)/40} = 1.17$ 25% difference isospin indep. vs.pn-only (compare to 40% for 3He/3H) For no extra T=0 pairs with f7/2 neutron: $\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{\sigma_{40}/48}{\sigma_{40}/40} = 0.83$

EXPERIMENT E08-014

12 days of beam time in Hall A in standard configuration

Jefferson Lab

Patricia Solvignon

A/3HE RATIO: MAP OUT 2N-SCALING REGION

Patricia Solvignon

Jefferson Lab

A/3HE RATIO: MAP OUT 3N-SCALING REGION

Patricia Solvignon

Jefferson Lab

A/4He RATIO: MAP OUT 3N-SCALING REGION

Patricia Solvignon

A/D RATIO: MAP OUT SCALING ONSET \sqrt{S} , X, Q^2

ISOSPIN STUDY FROM 48Ca/4°Ca RATIO

Patricia Solvignon

TARGET SPECS

Target	T(K), P(psia), L(cm)	$Thickness(g/cm^2)$
$^{2}\mathrm{H}$	22.0, 22.0, 20.0	3.35
³ He	8.0, 200.0, 20.0	1.38
⁴ He	8.0, 200.0, 20.0	2.28
Al Entrance	N/A, N/A, 0.035	0.09
Al Exit	N/A, N/A, 0.035	0.09
Al Wall	N/A, N/A, 0.035	0.09

Target	T (K)	P (psia)	length (cm)	$RL (g/cm^2)$	I^{limit} (μ A)
$^{2}\mathrm{H}$	22.0	22.0	20.0	3.35	60.0
³ He	8.0	200.0	20.0	1.38	60.0
⁴ He	8.0	200.0	20.0	2.28	60.0
		thickness	s (cm)		
$^{12}\mathrm{C}$		0.50)	0.95	80.0
⁴⁰ Ca		0.43	3	0.66	40.0
48 Ca		0.43	3	0.66	40.0

RUNNING DURING QWEAK

2 possible incident energies: ~3.362 and 4.462 GeV

Jefferson Lab

RUNNING DURING QWEAK

2 possible incident energies: ~3.362 and 4.462 GeV

For the same physics goal and uncertainties:

- at $3.362 \text{GeV} \rightarrow 2 \text{ HRSs}$: **14 (prod.) + 4 (over.) days**

- at 4.462GeV → left HRS: 19 (prod.) + 3.5 (over.) days

At the optimized energy of the proposal (3.6GeV): 10 (prod.) + 3 (over.) days

Jefferson Lab

Patricia Solvignon

OVERHEAD ESTIMATE (QWEAK ENERGIES)

Increased overhead due to coolant constraints: one cryo-target cooled at a time.

	Estimate	$3.362 {\rm GeV}$	$4.462 \mathrm{GeV}$	
			$\operatorname{time}(\operatorname{hrs})$	
HRS angle change	0.5 hr/change	$2.5 (5 \text{ changes}) \times 3(\text{or } 4)$	$3.5 (7 \text{ changes}) \times 3(\text{or } 4)$	
Target motion	$10 \min/motion$	6.7	7.3	
Cryo-target change	8hr/change	16	16	
Optics	0.5 hr/angle	3.5	4	
Dummy run	15% of $^3\mathrm{He}$ time	32.5	22	
BCM calibration		2×1		
Energy measurement		1×2		
Boiling study		8		
Rate-dependence tests		4		
Intial checkout		8		
TOTAL		90	84	

Unofficial estimates are that we'll likely be running at 20% of proposed luminosity or lower for ³He

SUMMARY

Inclusive scattering measurements from E08-014 (and PR09-010) will produce a detailed study of:

 \rightarrow Q² dependence of 2N, 3N-SRC from A/²H, A/³He and A/⁴He ratios

Study of isospin dependence of 2N-SRC

→ Look at isospin dependence in 3N-SRC region

 Nice complement to the results of 2N knock-out experiments

E08-014 is scheduled to run in Spring 2011

ISOSPIN STUDY FROM 3He/3H RATIO

Simple mean field estimates for 2N-SRC

Patricia Solvignon

FINAL STATE INTERACTIONS

- GEA very successful in A(e,e'p)
- GEA predicts FSI:
 - 1. small
 - 2. A-independent
 - 3. conserve α

Inclusive data in deuterium support FSI small

3N-SRC CONFIGURATIONS

Inclusive measurement should be able to differentiate between these momentum ranges

E08-014 SYSTEMATICS

	δσ/σ	δ R/R	δ R/R	
		(normalization)	(pt-to-pt)	
Acceptance correction	2.0%*	0.5-2.0%	0.0-1.0%	
Radiative correction	2.0%*	-	0.3%	
Tracking efficiency	1.0%*	-	0.2%	
Trigger efficiency	0.5%*	-	0.1%	
PID efficiency	1.5%*	-	0.2%	
Target thickness	0.5-2.0%	1.1-2.0%	-	
Charge measurement	0.5%	-	0.5%	
Energy measurement	0.05%	-	-	
COMBINED	4.1-4.6%	1.2-2.8%	0.7-1.2%	
Uncertainty on a2,a3		I.5-3.0%		
CLAS		6.3-8.1%		
SLAC		10-18%		

Most kinematics are systematics dominated

CRYO-WINDOW CONTAMINATION

Advantage of PR08-104:

Will use 20cm target

HRS resolution: cut away most of the window contribution

Empty can running: subtract the remaining contamination

KINEMATICS

	⁴ He	² H	⁴ He	¹² C	⁴⁰ Ca	⁴⁸ Ca	Total (per kin)
150	2.0	2.8	1.2	0.8	0.7	0.7	8.2
170	2.4	1.9	1.4	1.5	1.6	1.6	10.4
19° (2N)	2.4	3.8	1.3	0.9	1.2	1.2	10.8
19º (3N)	3.0	2.4	0.9	0.9	2.0	2.0	11.2
21° (2N)	3.0	2.4	1.1	1.2	2.9	3.1	13.7
21° (3N)	6.0	-	8.1	1.8	3.9	4.1	17.6
23° (2N)	6.0	4.8	2.1	2.3	5.8	6.2	27.2
23° (3N)	2.0	-	3.5	3.7	7,9	8.2	35.3
25°	24.0	-	7.1	7.3	15.7	16.4	70.5
27°	42.0	-	12.4	2.8	27.6	28.6	123.4
29° *	21.0*	-	6.2*	6.4*	3.8*	4.3*	61.7
Total (per tgt)	72.8	10.9	23.4	23.3	46.8	48.5	~226

9.4 days (data taking) + 2.6 days (calibration + overhead) = 12 days of beam time

